周鼐骁优秀作者
原创内容 来源:小居数码网 时间:2024-07-28 12:33:01 阅读() 收藏:24 分享:42 爆
导读:您正在阅读的是关于【数码知识】的问题,本文由科普作家协会,生活小能手,著名生活达人等整理监督编写。本文有7114个文字,大小约为31KB,预计阅读时间18分钟。
引言
什么是自动驾驶仿真测试
虚拟仿真技术是汽车研发、制造、验证测试等环节不可或缺的技术手段,能有效缩短技术和产品开发周期,降低研发成本;随着汽车智能化、网联化趋势的发展,虚拟仿真技术有了更大的发挥空间,比如自动驾驶系统的仿真测试验证;虚拟仿真测试是实现高阶自动驾驶落地应用的关键一环,具备自动驾驶功能的车辆必须经过大量的虚拟仿真测试以及实车路测之后才能商用化;
自动驾驶汽车商用化需经历的三个测试阶段:仿真测试、封闭场地测试、开放道路测试。
自动驾驶仿真测试:主要是以数学建模的方式将自动驾驶的应用场景进行数字化还原,建立尽可能接近真实世界的系统模型,无需实车直接通过软件进行仿真测试便可达到对自动驾驶系统及算法的测试验证目的。
仿真测试包括以下几种类型:模型在环仿真(MIL)— 软件在环仿真(SIL)— 硬件在环仿真(HIL)— 整车在环仿真(VIL)
自动驾驶系统开发V字流程
自动驾驶仿真测试的必要性
实车道路测试面临的问题:
据美国兰德公司研究:一套自动驾驶系统至少需要通过110亿英里的驾驶数据来进行系统和算法的测试验证才能达到量产的条件;因此单纯依靠实车路测极难完成这一目标,并且实车路测还存在以下问题:
仿真测试的优势:
实车测试与仿真测试方案对比
备注:● 真实 ○ 虚拟 ◎ 虚拟或部分真实 数据参考:中国汽车工程研究院
三者之间的关系
仿真测试、封闭场地测试、开放道路测试三者之间互相补充,形成测试闭环,共同促进自动驾驶车辆的研发和标准体系建立:
1)仿真测试结果可以在封闭场地和开放道路进行测试验证;
2)通过道路测试得出的危险场景,将会反馈到仿真测试中,便可有针对性的去调整设定场景和参数空间;
3)仿真测试和封闭场地测试的最终结果要进行综合评价,基于评价结果不断地去完善评价准则和测试场景库。
仿真测试、封闭场地测试、道路测试形成闭环促进研发及标准建立(资料来源- i-VISTA)
自动驾驶仿真测试的重要构成:场景库、仿真平台、评价体系;其中,场景库是基础,仿真平台是核心,评价体系是关键;三者紧密耦合,相互促进:场景库的建设需要仿真平台和评价体系作为指导,仿真平台的发展进化需要场景库和评价体系作为支撑,而评价体系的建立和完善也需要以现有的场景库和仿真平台作为参考基础;接下来笔者将从场景库、仿真平台、评价体系这三个重要方面依次展开来介绍。
一、场景库
1.1 什么是测试场景,包含哪些核心要素?
自动驾驶测试场景定义:自动驾驶汽车与其行驶环境各组成要素在一段时间内的总体动态描述,要素组成由所期望检验的自动驾驶汽车的功能决定;(定义引自:中汽协团体标准-自动驾驶系统功能测试第7部分 – 仿真测试)简言之,场景可以被视为是自动驾驶汽车行驶场合与驾驶情景的有机组合。具有场景无限丰富、极其复杂、难以预测、不可穷尽等特点。
测试场景要素:测试车辆自身要素以及外部环境要素;外部环境要素又包括:静态环境要素、动态环境要素、交通参与者要素、气象要素等。
测试场景要素划分
1.2 什么是场景库?场景库中测试场景的数据来源?
场景库定义:满足某种测试需求的一系列自动驾驶测试场景构成的数据库。场景库能够完成从场景数据的管理到场景测试引擎的桥接,实现从场景的自动产生、管理、存储、检索、匹配,到最后注入测试工具。
场景库包含4种典型测试场景(中汽中心基于数据来源不同的一种分类方法):自然驾驶场景、危险工况场景、标准法规场景、参数重组场景。
四种典型测试场景
测试场景的数据来源主要包括三大部分:真实数据、模拟数据以及专家经验
1)真实数据:即现实世界真实发生的,经过传感器采集到或以其它形式被记录保存下来的真实场景数据,包括自然驾驶数据、交通事故数据、路侧单元监控数据、封闭场地测试数据以及开放道路测试数据等;
2)模拟数据:主要包括驾驶模拟器数据和仿真数据;前者是利用驾驶模拟器进行测试得到的场景要素信息;后者是自动驾驶系统或车辆在虚拟仿真平台上进行测试得到的场景要素信息。
3)专家经验数据:基于专家的仿真测试经验总结归纳出来的场景要素信息,其中标准法规就是专家经验数据的典型代表。
测试场景数据来源
备注:测试场景数据来源参考《自动驾驶系统功能测试第7部分:仿真测试(征求意见稿)》
1.3 场景库的搭建流程
搭建流程:
自动驾驶测试场景构建流程(图片参考:中汽数据有限公司)
自动驾驶研发测试与场景库的搭建形成闭环:测试场景库的搭建,能有效驱动自动驾驶的研发测试工作,自动驾驶的研发测试反过来也能够为场景库提供反馈意见,丰富场景库。
1.4 国内场景库发展现状
现状分析:
国内典型场景库介绍
附表1. 中国典型场景库介绍
1)中汽数据有限公司 – 自建场景库
场景库覆盖范围:自然驾驶场景库(1228种)、功能安全场景库(110种)、V2X场景库、危险事故场景库(206种)、中国特有交通法规场景库(82种)、和预期功能安全场景库(70种)等。
a. 自然驾驶场景库
基于中国不同道路拓扑结构、交通基础设施、环境条件、车辆信息的动静态要素特征,从不同维度对数据库进行分类构建和更新迭代:
b. 功能安全场景库
功能安全场景库生成过程:
第一步:参考ODD分类的国际标准,对驾驶区域、天气、光线等7大类场景要素以及30类子要素进行排列与重组,进而形成体系化功能场景库;
第二步:将上述功能场景,基于真实路采场景数据,调整相关参数范围从而得到相应的逻辑场景,最后在仿真软件中搭建驾驶场景与周边环境,形成所需的复现场景;
第三步:在仿真验证软件中,激活ADAS功能,对复现场景下的电子电气失效展开仿真验证,并对产生的风险进行评估,根据公式计算出严重度(S)、暴露度(E)和可控性(C),最后根据ISO26262标准最终确定ASIL风险等级。
c. V2X 场景库
2)中国汽车工程研究-自建场景库
场景库数据来源:标准法规、交通事故、人工经验以及自然驾驶数据。
场景库生成方案:场景数据采集、场景分类提取、场景数据标注、场景聚类、场景重构、虚拟场景转化等。
场景库V2.0生成方案(来源-中国汽车工程研究院)
中国典型场景库V2.0:
2020年12月,“中国典型场景库”在V2.0版本的基础上升级到V3.0:
四个等级场景包(数据来源-中国汽研官网)
3)百度 – 自建场景库
涵盖场景类型:
典型场景类型数量:200种左右
涵盖:不同的道路类型、障碍物类型、道路规划、红绿灯信号
测试场景数据来源:自然驾驶路采数据、交通数据库、人工经验等。
测试场景基于生成方案的不同又分为:Logsim场景和Worldsim场景,目前总共提供了 220 个Worldsim场景和 17个Logsim场景。
a. Logsim:由路测数据提取的场景,提供复杂多变的障碍物行为和交通状况,场景充满不确定性
b. Worldsim:由人为预设的障碍物行为和交通灯状态构成的场景,场景简单
4)腾讯– 自建场景库
路测实采数据积累:截止到2020年,已经积累了超过50万公里交通场景数据。
涵盖场景类型:车辆避撞能力、交通合规性、行为能力、视距影响下交叉路口车辆冲突避免、碰撞预警、紧急制动、危险变道、无信号交叉口通行、行人横穿等方面。
典型场景类型数量:1000种左右
场景生成方案:通过Agent AI能力,可以自由生成各种随机的驾驶场景
二、仿真平台
2.1 仿真平台典型架构
仿真平台一般包括仿真框架、物理引擎和图形引擎;其中仿真框架是平台软件平台的核心,支持传感器仿真、车辆动力学仿真、通信仿真、交通环境仿真等;
1)传感器仿真:支持支持摄像头、激光雷达、毫米波雷达以及GPS/IMU等传感器仿真;
2)车辆动力学仿真:基于多体动力学搭建的模型,将包括转向、悬架、制动、I/O硬件接口等在内的多个真实部件进行参数化建模,进而实现车辆模型运动过程中的姿态和运动学仿真模拟;
3)交通场景仿真:包括静态场景还原和动态场景仿真两部分,静态场景还原主要通过高精地图和三维建模技术来实现;
动态场景仿真既可通过把真实路采数据经过算法抽取后,再结合已有高精地图进行创建,也可通过对随机生成的交通流基于统计学的比例,经过人工设置相关参数后自动生成复杂的交通环境;
例如可模拟自动驾驶汽车在现实世界中可能遇到的极端情况和危险情况,从模拟暴雨和暴雪等恶劣的天气条件到较弱的光线照明,再到周围车辆的危险操作等;
4)V2X仿真(通信仿真):支持创建真实或虚拟传感器插件,使用户能够创建特殊的V2X传感器;既可以用来测试V2X系统,又可生成用于训练的合成数据;
仿真平台典型架构(图片参考-2019自动驾驶仿真技术蓝皮书)
2.2 国内典型自动驾驶仿真平台
附表2. 国内典型自动驾驶仿真平台信息梳理
注:√- 有此功能 ×-无此功能 — Unknown
1)浙江天行健智能科技 – Panosim
平台类型:面向汽车自动驾驶技术与产品研发的一体化仿真与测试平台
平台特点:
2)51WORLD – 51Sim-One
平台类型:覆盖自动驾驶全流程的一体化集成的仿真测试平台
平台特点:
3)腾讯 – TAD Sim
平台类型:基于虚幻引擎打造的虚实结合、线上线下一体化的仿真测试平台
平台特点:
4) 沛岱(上海)技术有限公司– Pilot-D GaiA
平台类型:基于德国自动驾驶仿真核心技术所研发的仿真测试平台
平台特点:
2.3 国外典型仿真测试平台
附表3. 国外典型自动驾驶仿真平台信息梳理
注:√- 有此功能 ×-无此功能 — Unknown
1)西门子 – PreScan
类型:以物理模型为基础的传统汽车仿真平台
平台特点:
2)MSC Software – VTD
类型:传统汽车仿真平台
平台特点:
——提供图形化的交互式路网编辑器 Road Network Editor (ROD), 在构建路网仿真环境的时候,可以同步生成OpenDrive高精地图
—— 对于动态场景构建,提供了图形化的交互式场景编辑器 Scenario Editor
3)德国IPG – CarMaker
类型:以传统动力学仿真为基础优势发展起来的自动驾驶仿真平台
平台特点:
—— IPG Road:可以模拟多车道、 十字路口等多种形式的道路, 并可通过配置 GUI生成锥形、 圆柱形等形式的路障
—— IPG Traffic:提供丰富的交通对象模型,如车辆、 行人、 路标、交通灯、 道路施工建筑等
—— IPG Driver:提供可自学习的驾驶员模型
—— 支持从HERE HD Live Maps导入地图数据
—— 支持ROAD5和OpenDrive 格式导出地图数据
4)英伟达- Drive Constellation
类型:基于虚幻引擎开发,由两台服务器构成的自动驾驶仿真平台
平台构成:
a.第一台服务器硬件构成:由8个英伟达RTX Turing GPU
作用:运行DRIVE Sim软件来模拟仿真自动驾驶车辆上的传感器数据(包括摄像头、毫米波雷达、激光雷达、IMU和GNSS)以及驾驶场景数据;
b.第二台服务器硬件构成:自动驾驶车辆目标AI ECU
作用:用于处理第一台服务器传输过来的模拟数据,如传感器仿真数据
平台特点:
英伟达- DriveConstellation 仿真平台(来源-英伟达官网)
5)微软 – AirSim
类型:建立在虚幻引擎(Unreal Engine)上的无人机及自动驾驶开源仿真平台
平台特点:
6)巴塞罗那自治大学(联合丰田研究院和英特尔实验室) – CARLA
类型:基于虚幻引擎开发,采用服务器和多客户端架构的开源平台
平台特点:
7)LG电子 - LGSVLSimulator
类型:基于游戏引擎-Unity研发的自动驾驶开源仿真平台
平台特点:
—— 高精地图:支持创建、编辑和导入/导出现有3D环境的高清地图
注:高精地图支持的导入/导出格式:
a.支持的导入格式:Apollo5.0高清地图、Autoware Vector map、Lanelet2和OpenDrive 1.4
b. 支持的导出格式:Apollo 5.0、Lanelet2和OpenDrive 1.4
LGSVL工作流程(来源:公众号-自动驾驶仿真)
2.4 国内科技公司–云仿真平台
传统的仿真测试一般是单机仿真测试,但高阶自动驾驶系统的商业化应用,需要进行庞大数量测试场景的仿真测试;海量的数据存储,运算及处理已经成为摆在自动驾驶研发道路上一道障碍,而云平台的分布式架构、加速计算能力以及高数据算力的特性,能够可以很好的解决这一问题,进而能够极大地提升系统研发和验证测试效率;因此,云平台仿真必将是未来自动驾驶仿真测试技术的发展趋势,同时也会是企业开展自动驾驶开发的核心技术壁垒之一。
附表4. 国内科技公司云仿真平台信息梳理
1) 百度 – Apollo云仿真平台
主要应用:
平台特点:
2)华为 – 自动驾驶云服务Octopus
平台提供三大服务:数据服务、训练服务、仿真服务;服务覆盖自动驾驶数据、模型、训练、仿真、标注等全生命周期业务;
平台提供的三大服务
平台特点:
3) 腾讯 – TAD Sim Cloud
平台特点:
腾讯云平台系统架构(来源-自动驾驶云论坛演讲报告)
4)阿里 – 混合式仿真测试平台
平台特点:
三、仿真测试评价体系
3.1 仿真测试评价维度及具体评价内容
1)两个重要评价维度:真实性和有效性
a. 真实性评价:主要是针对场景库真实合理性的评价,分为场景信息真实度、场景分布真实度两个方面
真实度评价的两个维度
场景信息真实度:在场景在构建过程中,需要合理准确的在虚拟环境中渲染测试场景中的静态环境要素(如交通设施、道路及障碍物等)、动态环境要素(动态指示设施、通信环境信息)、交通参与者要素(机动车/非机动车、行人等)以及气象环境要素(环境温度、光照条件、天气情况)等信息。
场景分布真实度:在参数重组场景中对于由特征元素组合和人工编辑合成的场景,由于人工修改参数后可能会出现真实世界不存在的场景,因此在人工编辑场景时需参考真实世界场景的参数值范围去合理化地设置参数重组场景。
b. 有效性评价
目前尚未统一的有效性评价标准,当前可参考的标准如下:
2)具体评价内容:仿真测试自身评价以及自动驾驶车辆驾驶性能、驾驶协调性、标准匹配性、学习进化性等方面;
自动驾驶仿真测试评价项目
注:评价项目内容参考《2020中国自动驾驶仿真蓝皮书》
3.2 仿真测试评价标准示例
评价方法:(两种)
评价指标:(两类)
参考:评价标准参考《自动驾驶系统功能测试第7部分:仿真测试(征求意见稿)》
结语
自动驾驶仿真测试发展面临的挑战
1)场景库建设
2)仿真平台
3)测试评价体系
自动驾驶仿真测试技术发展趋势展望
1)基于云平台的高并发测试、加速测试是仿真测试未来重要的发展方向,是自动驾驶仿真企业的核心竞争力之一;云平台具备海量数据存储、处理和管理的能力,支持大规模仿真构建,覆盖海量驾驶场景;可有效建立城市级地理信息+虚拟交通流信息,可实现跨专业多用户信息交互与共享。
2)功能安全场景库、V2X场景库以及预期功能安全场景库将是未来场景库建设的重点;不同厂商采用统一数据格式标准,共建基础场景库,形成通用的、可移植的场景库。
3)混合交通仿真测试将是未来自动驾驶仿真技术的一个重要研究领域;自动驾驶汽车取代传统汽车不是一蹴而就的事情,必然在相当的一段时间内处于两者共存的局面,因此传统汽车与自动驾驶汽车混行将是一种常见的交通场景。甚至还需要建立自动驾驶车辆在不同渗透率下的混合交通仿真模型。
4)数字孪生技术将为自动驾驶仿真测试发展道路上的一大助力,是仿真测试的增效利器; 数字孪生就是在虚拟环境中建立一个和现实世界一致的模型。自动驾驶数字孪生测试VRIL(Virtual Reality in the Loop)即真实的车辆在真实的测试场地中进行测试,将同时映射到虚拟的测试环境中,从而完成虚、实状态的同步,实现整个数字孪生系统的闭环实时仿真测试。
5)当前自动驾驶仿真测试主要还是偏向于传统的主被动层面的安全性及可靠性等方面的测试验证,以及用于感知、规划决策及控制算法的研发或迭代升级;但是每个自动驾驶车辆都不是孤立存在的,必然是网联化的,是作为整个智慧交通体系中的一个智能节点而存在,因此信息安全方向的验证测试与评价也必然是未来自动驾驶仿真测试的一个重要研究方向。
上面就是小居数码小编今天给大家介绍的关于(中国自动驾驶仿真技术研究报告)的全部内容,希望可以帮助到你,想了解更多关于数码知识的问题,欢迎关注我们,并收藏,转发,分享。
94%的朋友还想知道的:
(338)个朋友认为回复得到帮助。
部分文章信息来源于以及网友投稿,转载请说明出处。
本文标题:自动驾驶仿真行业梳理(中国自动驾驶仿真技术研究报告):http://sjzlt.cn/shuma/152249.html